Workshop on Survey Methodology:

Big data in official statistics

Block 6: Big data as primary data source

20 May 2019, Brazilian Network Information Center (NIC.br), São Paulo, Brazil

Jan van den Brakel Statistics Netherlands and Maastricht University

Introduction

Sampling theory:

- Data generating process known and controlled by the design of the probability sample
- Probability sampling offers a clear frame work to construct optimal sampling strategy, i.e. (design + estimator)
- Correct for under and over sampling via inclusion probabilities and calibration
- Measuring the uncertainty via variance estimation
- Growing interest in using alternative data sources that are generated as a by-product of processes not directly related to statistical production purposes. Referred to as non-probability data or big data

Non-probability data or big data:

- Unknown to which extend results can be generalized to an intended target population
- Data generating process is unknown
- Data driven research
- Many examples at CBDS:
 - Social media studies; Sentiment index
 - Propensity to move from registers
 - Web scraping / text mining from websites
 (innovative companies and sustainable companies)
 - Scanner data for price indices
 - Hay fever indicator based on scanner data
 - Mobile phone data for day time populations
 - Measuring increase of urbanization with satellite data
 - Measuring solar power panels with aerial images

- Estimating solar power production indirect

• Problem: no clear frame work, apparently each application requires a different approach

Outline:

- Review of literature to correct for selection bias in nonprobability samples
- Some examples in more detail:
 - Estimating unmetered photovoltaic power
 - Two examples of satellite images and aerial images
 - Measuring road intensity with road sensors
 - Day time population with mobile phone data

Inference for nonprobability samples

Most methods often (but not always) use a reference sample that is based on a probability sample

- Machine learning algorithms to analyze the relation between images and survey or census data
 - Remotely sensed night-time light (via satellite images) as a proxy for poverty (Noor et al., 2008)
 - Day time satellite images to predict well-being (Engstrom et al., 2017)
 - Mobile phone data to predict poverty (Blumenstock et al., 2015)
- Weighting and calibration
 - Similar to weighting in sample surveys (Särndal et al., 1992)
 - Strong assumption MAR conditional on the covariates

- Quasi-randomization
 - Explicit model for estimating inclusion
 probabilities for the units in the nonprobability
 sample
 - Same covariates in the probability and nonprobability sample
 - Elliott and Valliant (2017); Valliant et al. (2013);
 Valliant and Dever (2011), based on propensity scores (Rosenbaum and Rubin, 1983, 1984)
 - Strong assumption MAR conditional on the covariates
- Superpopulation model approach
 - No reference sample
 - Explicit model for the observations in the sample $y_i = f(x_i)$
 - Predictions for the units not included in the sample \hat{y}_i

- Prediction population total $\hat{t}_y = \sum_{i \in s} y_i + \sum_{i \in (U \setminus s)} \tilde{y}_i$
- Valliant et al. (2000), based on strong assumption
 MAR conditional on the covariates
- Inverse sampling
 - Available:
 - * Selective big data sample (\mathcal{B}) containing target variable y_i and auxiliary variable \mathbf{x}_i
 - * Representative probability sample (\mathcal{A}) containing auxiliary variable \mathbf{x}_i
 - $-\mathcal{A}$ is used to assess the selectivity of \mathcal{B}
 - Calculate importance weights for all units in \mathcal{B}
 - Draw a sample from \mathcal{B} with unequal selection probabilities proportional to the important weight
 - \rightarrow Simple random sample
 - Reference: Kim and Wang (2018)

- Data integration
 - Available:
 - * Selective big data sample (\mathcal{B}) containing target variable y_i and auxiliary variable \mathbf{x}_i
 - * Representative probability sample (\mathcal{A}) containing auxiliary variable \mathbf{x}_i
 - Imputation of y_i in \mathcal{A} from \mathcal{B} using \mathbf{x}_i via nearest neighbour (Rivers, 2007)
 - Construct weights for all units in \mathcal{B} based on a parametric model and apply unequal probability weighting (Kim and Wang, 2018)

Estimating unmetered photovoltaic power consumption

- Energy accounting requires coherent statistics on energy related issues
- Statistics on renewable energy for evaluating the agenda on energy transition and on climate policy
- Production of electricity by domestic photovoltaic installations
 - currently unknown
 - incomplete register of PV installations and assumptions about their average capacity
- Purpose of this project: approximate the amount of unmetered photovoltaic electricity indirectly

Estimating unmetered photovoltaic power consumption

Approach

- If PV installations produce a lot of electricity, less electricity will be taken from the high voltage grid
- Available data:
 - Time series data on electricity exchange on the high power grid
 - Meteorological time series data on solar irradiance
- Hidden signal on the amount of solar power produced by domestic PV installations

Data

Data

- Time series on electricity exchange from the high power voltage grid:
 - MWh at a daily frequency
 - January 1st 2004 through December 31th 2017
 - Downloaded from the website of the Dutch
 Transmission System Operator (Tennet)
- Meteorological time series data
 - Solar irradiance in J/cm^2 at a daily level
 - Temperature (in 0.1° C) at a daily level
 - Day length
 - January 1st 2004 through December 31th 2017
 - Downloaded from the website of the Royal
 Netherlands Meteorological Institute for the same period.

Data

Time series

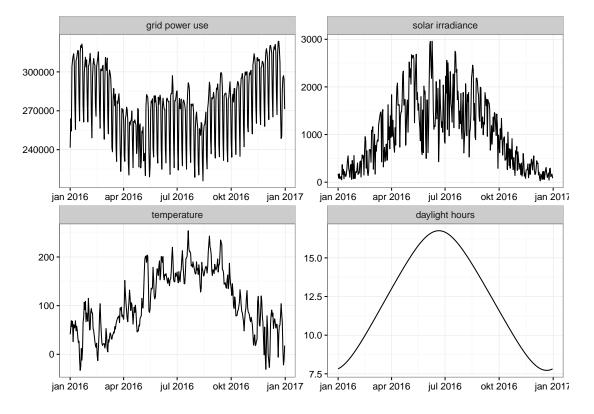


Figure 1: Available time series for 2016 on a daily frequency.

Model

- Production of solar power (P_t) :
 - Irradiance (I_t)
 - Temperature (T_t)
 - Day length (L_t)
 - Calendar effects (C_t)
- Problem: Electricity demand (Y_t) also depend on I_t, T_t, D_t, C_t

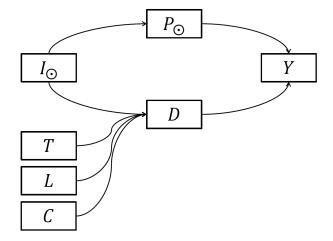


Figure 2: Directed acyclic graph (DAG) for the solar power causal model, with $I_{\odot t}$ solar irradiance, $P_{\odot t}$ solar power, Y grid power, D total demand, T temperature, L length of day and C calender effects.

Two causal paths between I_t and Y_t ,

$$I_t \to P_t \to Y_t \tag{1}$$

$$I_t \to D_t \to Y_t \tag{2}$$

Problem: how to isolate the effect of I_t on P_t :

- Causal modelling (Pearl, 1995)
- Assume independence between P_t and D_t
- Estimate the effect of I_t on demand D_t

ARIMAX model for period 2004 - 2010(Box et al., 2015)

- $-Y_t = f(I_t, T_t, L_t, C_t)$
- $-\beta_I$: effect of I_t on demand

Problem: how to isolate the effect of I_t on P_t (cont.):

- Estimate the effect of I_t on demand P_t
 - ARIMAX model for period 20013 2017
 - Correct Y_t for the effect of I_t on demand: $\tilde{Y}_t = Y_t - \beta_I I_t$ - $\tilde{Y}_t = f(I_t, T_t, L_t, C_t)$ - $\tilde{\beta}_{I,y}$: effect of I_t on \tilde{Y}_t (year dependent)
- Estimate the daily production of solar power: $\hat{P}_t = \tilde{\beta}_{I,y} I_t$
- Annual estimates: aggregating the daily estimates \hat{P}_t

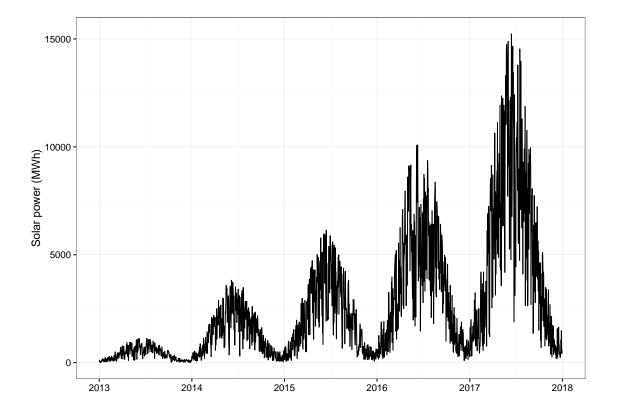
ARIMAX(p,d,q) model:

- Model selection based on AIC
- *d*=1
- AR lags p=6
- MA lages q = 1
- Selected covariates and their interactions: Buelens and van den Brakel (2018)

Results of the ARIMAX model fit

Year	$\tilde{eta}_{I,y}$	SE	\hat{P}_t (MWh)	\hat{D} (MWh)	Percentage solar
2013	-0.390	0.787	140,877	101,554,484	0.14%
2014	-1.296	0.797	485,381	99,549,220	0.49%
2015	-2.004	0.755	774,212	100,436,422	0.77%
2016	-3.409	0.828	$1,\!275,\!643$	$102,\!065,\!655$	1.25%
2017	-5.086	0.807	1,867,628	103,223,204	1.81%

- $\tilde{\beta}_{I,y}$ shows a clear increase in solar power production
- Demand (\hat{D}) : grid power+solar power



Estimated solar power

Figure 3: Estimated solar power for the years 2013—2017 in MWh.

Model evaluation

- Standardized residuals
- Comparison with CBS publications on solar power production

Table 1: Diagnostic checks on standardized residuals of the ARIMAX fit data

set A and B.							
Diagnostic	Data set A	Data set B					
Skewness	-2.17	-1.88					
Kurtosis	22.94	19.32					
p-value Bowman-Shenton test on normality	0.00	0.00					
p-value Box-Ljung test on autocorrelation	0.01	0.00					
p-value F-test on heteroscedasticity	0.53	0.39					

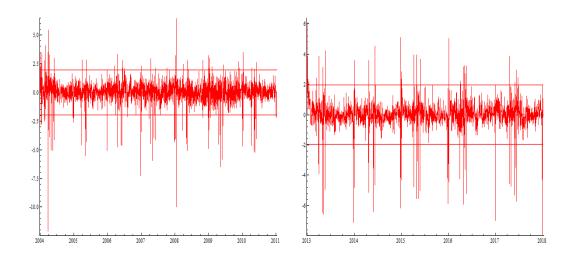


Figure 4: Standardized residuals of the ARIMAX model with a 95% confidence interval applied to data set A (left panel) and data set B (right panel).

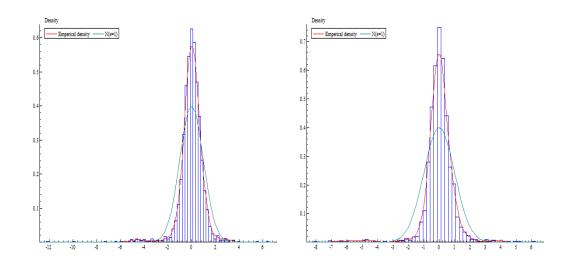


Figure 5: Histogram of the standardized residuals of the ARIMAX model with the empirical distribution and the standard normal distribution for data set A (left panel) and data set B (right panel).

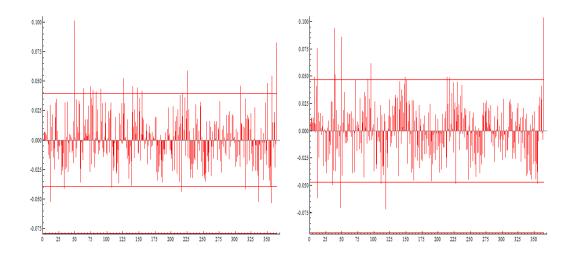


Figure 6: Correlogram of the residuals of the ARIMAX model with a 95% confidence interval for data set A (left panel) and data set B (right panel).

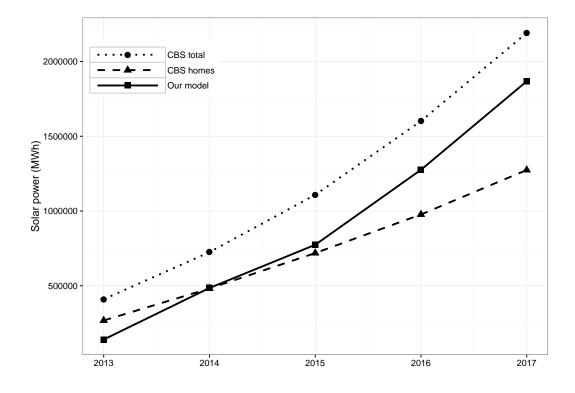


Figure 7: Comparison of our model results (solid line) with official statistics published by CBS on total solar energy consumption (dotted line) and the amount consumed by households (dashed line).

- Solid line ARIMAX estimate
- Dashed line: total solar power estimate (CBS) includes metered solar power by solar power farms
- Dotted line: solar power household PV installations

(CBS)

Divergence in 2016 and 2017 might be explained by unmetered PV installations of companies

Conclusions

- Statistical information on the use of renewable energy relevant for SDG indicators and energy transition
- Method to estimate unmetered solar power using data found on the internet
- Results do not disagree with CBS publications
- Improvements
 - Time series models (STM?)
 - More realistic modelling of interactions between temperature and production of solar power
 - Multivariate approach for regional estimates
 - Account for increase of unmetered wind energy

References

- Blumenstock, J., Cadamuro, G., and On, R. (2015). Predicting poverty and wealth from mobile phone metadata. *Science* (350).
- Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
- Buelens, B. and van den Brakel, J. (2018). Estimating unmetered photovoltaic power consumption sing causal models. Technical report, Statistics Netherlands.
- Elliott, M. R. and Valliant, R. (2017). Inference for Nonprobability Samples. Statistical Science 32 (2), 249–264.
- Engstrom, R., Hersh, J., and Newhouse, D. (2017). *Poverty from space: Usign high resolution satellite imagery for estimating economic well-being.* Technical report.
- Kim, K. and Wang, Z. (2018). Sampling techniques for big data analysis in finite population inference. *International Statistical Review*.
- Noor, A., Alegana, V., Gething, P., Tatem, A., and Snow, R. (2008). Using remotely sensed night-time light as a proxy for poverty in Africa. *Population* and Health Metrics (6:5).

- Pearl, J. (1995). Causal diagrams for empirical research. *Biometrika* 82 (4), 669–688.
- Rivers, D. (2007). Sampling for web surveys. In *Joint Statistical Meetings*.
- Rosenbaum, P. and Rubin, D. (1984). Reducing Bias in Observational Studies Using Subclassification on the Propensity Score. Journal of the American Statistical Association 79 (387), 516–524.
- Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika* 70 (1), 41–55.
- Särndal, C., Swensson, B., and Wretman, J. (1992). Model Assisted Survey Sampling. New York: Springer Verlag.
- Valliant, R. and Dever, J. (2011). Estimating propensity adjustment for volunteer web surveys. Sociological Methods & Research 40, 105–137.
- Valliant, R., Dever, J., and Kreuter, F. (2013). Practical tools for designing and weighting survey samples. New York: Springer Verlag.
- Valliant, R., Dorfman, A., and Royall, R. (2000). Finite population sampliong and inference: a prediction approach. New York: Wiley and Sons.